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The problem of two fixed centres can be integrated in quadratures by using Stoeckel’s theorem in 

spheroidal coordinates. The elliptic coordinates of the meridian plane satisfy equations that define a 

complex elliptic curve. The solution can be written down by using the uniformization formula of the 

elliptic curve. The constants defining the result in terms of doubly periodic functions are calculated 

successively from the initial data. The half-period ratio is determined by solving a complex 

transcendental equation using modular functions. The magnitude of the half-period of least absolute 

value is determined using 6-functions of the zero argument, using invariants of the Weierstrass 

p-function. 

1. REDUCTION OF THE PROBLEM 

LETTHE motion of a material point be defined in (generally complex) three-dimensional space 
in terms of the force function 

U = m,lr, f mJr2 (1.1) 

where m, and m, are the “masses” of the centres of gravitation, and r, and r, are the distances 
from the point to the centres, which lie on the z-axis at points with coordinates (0, 0, q) and 
(0, 0, cJ, respectively. It is assumed that 

We shall also assume from the start that, by a suitable choice of the units of measurement, the 
gravitational constant is unity. 

We know [l] that (1.1) is a real function, i.e. it may describe real motions, in only two cases: 
the classical case (when the masses and coordinates of the centres are real) and a generalized 
case (the masses and coordinates are complex conjugate). 

We will continue our analysis in a uniform way for either of the two admissible cases. To fix 
our ideas, therefore, we will consider the generalized problem of two fixed centres, also 
assuming throughout that 

m, =T(l+iO), m2 =5(1-io), c, =c(O+i), c2 =c(a-i) 
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954 I. I. KOSENKO 

By Stoeckel’s theorem, the problem can be integrated in quadratures in oblate spheroidal 
coordinates h, p, v, defined by the formulae 

Xi =c[(l+h2)(1-+ )] cosv 2 K 

x2 =c[(l+~2)(1-lL2)]Hsinv 

x3=ccJ+cxp; XBO, -lCpGl, ocv<2rr 

In terms of these coordinates the kinetic energy and force function may be written in the form 

+(1+h2)(1-$)G2 
I 

m h-t3p u=-- 
c A?+$ 

An application of Stoeckel’s theorem, followed by the introduction of a new independent 
variable u related to the time t by the equation 

drldu = c(h* + j.~*) (1.2) 

shows that the elliptic coordinates of the meridian plane h, p will satisfy the differential 
equations 

1 dh* -- [IL = 
2 du 

“h+a,h* +a2 (l+h*)+a, 
C I 

1 (1+p2)-a3 

(1.3) 

where a,, a,, and a, are constants of integration that define an invariant toroidal manifold in 
the phase space of the problem: a, is the value of the energy integral, and a, corresponds to the 
area constant and determines the rotation of the meridian plane via the equation 

(1.4) 

The quantity c characterizes the distance between the centres of gravitation. In space-satellite 
problems c must be a small quantity, while the dimensions of the orbit are of the order of unity. 

2. ELLIPTIC CURVES 

Either of Eqs (1.3) may be written in the form 

dz * 
[ 1 Z 

=[a2+a1z2 +a21@+z2)+a3 (2.1) 

where the coefficients on the right are related in a fairly obvious way to the coefficients of (1.3). 
Equation (2.1) describes an elliptic curve in the complex space C* of the variables (z, 

w = dzldu). A general solution of (2.1) may be obtained by using a uniformization procedure 
[2]. To that end we have to submit (2.1) to a series of transformations. We first bring (2.1) to the 
general form 



changing to a new independent variable 

Making the substitution t + zzrt w&e 

we eliminate the third-dr;gree term in (X4), obtain@ 

(2.4) 

(2.5) 

g2=~+3A2, g3=-AC+A3-BB1 W) 

which wili be treated as invariants of the Weierstrass ~-f~~t~on: since B’ = 4A’ -g&-g,, the 
sysxem of equatirtns 

p(u) =A, @“(I.!) = B (2.10) 

has a unique solution 2) in the parallelogram of periods. 
Further, using the addition theorem for p-functions we obtain a ~ifor~~at~~~ of the curve 

(2_7), in the form 

1 mu, 
Zl (q ) = - -U/2)-@‘(U) 

2 Ph -u/2)-p(u) 

@*ll) 

Thus, suppose we have obtained a solution of (2.11), which in fact amounts to calculating the 
half-periods of the @-function. We now resume our task of finding a solution of tbc; original 
problem, given the following initial data when f = &, : xlot x=, h, &, kBy km= The initial data 
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in spheroidal coordinates are readily calculated. Using (1.2), we determine the initial data for 
Eqs (1.3). Since they are of the same type, we confine our attention to Eq. (2.1). 

Suppose we have calculated the values of z0 and (dzld& = z;. These two numbers determine 
a point on the elliptic curve defied parametrically as follows: 

1 @‘(Id-w/2)-@‘(w) 
z(u) = - 

2P Po4-w~2)-P(w) 

The initial values for 
system of equations 

~(u)=~-~[p(u-w/2)-p(u+w/2)1 (2.12) 

B =a1 . H w=B/p 

this curve correspond to a value of the parameter u = V, that satisfies the 

z(u,) = ZI-J, z’(V)) = 6 (2.13) 

Using (2.12), we can now express the solution of the Cauchy problem in the form 

2 = z(ug + u) (2.14) 

Thus, the parameter value corresponding to the starting time I = t,, is u = 0. 
The systems of equations (2.13) and (2.10) can be solved numerically. This can be done using 

the parity properties of the function (2.13) and the p-function, respectively. 
It is obvious from (2.3) that the procedure does not work when a, =0 (the case of zero 

energy). But even then, on the assumption that a, #O, it is fairly easy to solve Eq. (2.1). We 
define a new independent variable u, by 

x u, = a, 11 (2.15) 

Then Eq. (2.4) becomes 

dz 

[ 1 
2 

T&- 
= 4z3 + 6a;z2 + 4a;z + a; 

a; = 2a2 ‘=6 
5-43 ’ ai =4 

a,6 + a3 

a 

(2.16) 

(2.17) 

To reduce Eq. (2.16) to Weierstrass form, we must eliminate the quadratic term. This can be 
done by a linear transformation 

z, =z+a; I2 (2.18) 

After this substitution the equation of the elliptic curve will be in Weierstrass normal form 

dz2 c 1 1 

dul 
= 42: - &ZI - g3 

g2 =3d2-4a;, g3=-d3+4a;a; -a; 

The curve (2.19) is uniformized by the equations 

(2.19) 

(2.20) 

ZI (u, I= P(q ), $II, I= P’(u, ) (2.21) 
I 
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Cases of further degeneracy of the curve (2.2) are trivial. 

3. MODULAR FUNCTIONS 

The g-function in Eqs (2.12), (2.21) depends on structural parameters: the half-periods o 
and 0’. We will assume that Im(o’/w) > 0, while I o kl co’ I. This can always be achieved by a 
suitable choice on the lattice of periods in C. Denote the values of the invariants g,, g, obtained 
by formulae (2.9) or (2.20) by a and b, respectively. 

If the half-periods are known, the invariants may be represented by Eisenstein series 

g, (co, Co’) = 601;‘(??2w + m’o’)” 
(3.1) 

gs(o,o’) = 140qmw + nz’o’)~ 

where the summation is carried out over m, m’e Z, and the prime on the summation symbol 
indicates that the term with both indices zero (m, m’) = (0,O) must be omitted. 

From the computational point of view, it is more convenient to use as parameters not o and 
o’ but T, and o, where T = o’/o. By construction, z E H, where H is the upper half-plane. On 
the upper half-plane we can define a modular function J(T) in terms of the functions (3.1) 

(3.2) 

We know [3] that J(z) is invariant under the modular group r. The action of I’ on the upper 
half-plane H divides it into domains, each consisting of points that are congruent modulo r 
(shown hatched in Fig. 1). 

We also know that r is generated by (besides the identity) two transformations 

T: z + -T + 1, S: z + -l/q (3.3) 

The fundamental domain G is bounded by the unit circle and by two straight lines Rer = +X. 
In addition, the following part of the boundary belongs to the domain (see Fig. 1) 

AC= (z: ReT=-J$, lzl> 11, A={z=-K+i3%/2) 

AB=(2:lzl=l,-j$ <Rez<O), B=(z=i) 

The remainder of the boundary may be obtained from the above by the transformations T, S. 
It now remains to recall the well-known theorem [l, 31 according to which the equation 

J(T) = c (3.4) 

has exactly one solution in G. The cases c = 0, 1 and 00 require special consideration. 
If J(z)=O, then z =e26’3, while if J(z) = 1, we have ~=i; these values of z are triple and 

double roots, respectively, of Eq. (3.4). Since A is common to three domains (of the six for 
which it is a limit point)-the images of G under the elements of r, while B is common to two, 
we may legitimately state that the function J :G + C is both surjective and injective, i.e. it is a 
bijection. 

We will now describe an algorithm that, given the coefficients of (2.2), computes the 
parameter z. Fist, we find the values a and b of the invariants g, and g, (see the previous 
section). We then evaluate J(z) from the expression a3 /(a’ - 27b*). If it turns out that J(z) = 0, 1, 
m, the computation of z is complete and we accordingly put 2 = e2d’3, i, 00. Of course, in actual 
practice exact equality is impossible, so we must take computer errors into account. 
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FIG. 1. 

By (3.2), it is clear that J(r)=O, if a=O, b;tO; J(z)=1 if b=O, a+@ J(z)== if a+O, 
a3 - 27b2 = 0. The limiting case a = b = 0 requires further analysis. By (3.2), we can write 

J(z) = (1 - 27a)-I (a = b2/u3) 

If the parameters of the problem are varied so that a + l! 27, then J(z) + 00. As a + 0, = we 
obtain J(z) + 1, 0, respectively, that is, the situation is reduced to that already described. 

Our problem is thus to search for the unique root in G of Eq. (3.4), where the cases c = 0, 1 
and = have already been disposed of. To that end, we can use any standard method for the 
numerical solution of transcendental equations, such as Newton’s method. The initial 
approximation may be a point of the interior of G, e.g. Z, = 2i E G. Further iterations will then 
“close in” on the nearest root of Eq. (3.4). 

It is not impossible that this root may turn out to lie not in G but in another domain-the 
image of G under the action of r. This may happen if, owing to the specific method chosen, the 
initial approximation 2, is actually closer to a root of (3.4) outside G. 

Note that, in any case, the iterations will not leave the upper half-plane, since G is separated 
from the real axis by other domains in which the algorithm will inevitably approximate a root 
(provided, of course, that the step size is sufficiently small). 

In fact, the elements of r can map the point 00 of G either onto 00 (transformation 2) or onto 
0 (transformation S). By combining T and S in all possible ways, therefore, we obtain all 
images of OQ only at rational points of the real axis. Since the images of G become increasingly 
finer as one approaches the axis Imz = 0, while the function J(z) is a congruence in each of 
them, J : G + C, it follows that this function behaves in an increasingly irregular fashion as 
Imr + 0. As one approaches the real axis within a single domain, J(z) + 04 Thus, an accurately 
organized computational procedure will “sense” this barrier of irregularity as Imr + 0. In the 
final analysis, one can always check the value of Im z and, at a sufficiently small distance from 
the axis Imz = 0, modify the initial approximation. 

Thus, let r* E H be the numerically computed root of Eq. (3.4). For our further calculations 
we will need the point 2 E G congruent to T* relative to the group I-. To solve that problem, we 
will use the transformations T and S. The algorithm consists of the following steps. 

1. If z* E G,set r=z*. End. 
2. If r* lies on the arc [A’@, apply the transformation S: z = -l/r*. End. 
3. If z* lies on the arc (A’C’), apply the transformation T-’ : 7 = z * -1. End. 
4. If Rer* C-X, apply the transformation T: z * = z * +l until this condition is first violated. 

Go to 1. 



Modular-function representation of the problem of two fiied centres 959 

5. If I z* I< 1 apply the transformation S : T* = -1 /z * . Go to 1. 
6. If Rer* > j$, apply the transformation T” : z* = z * -1 until this condition is first violated. 

Go to 1. 

The computational procedure we have described still needs an effective algorithm to evaluate 
the function J(z) and possibly also its derivative. To that end we will use yet another modular 
function h: H + C [2, 31. Though not invariant under r, it is invariant under a subgroup r, c r, 
also known as the h-group [4]. 

It is important that, instead of calculating gz(l, r), g,(l, 2) for each z* E H, and only then J(z) 
we can use the following formula [2,3] 

J(z) = 4@*(T) - k(T) + l)3 

27X2(2)(1 -h(z))* 

2n-1 * 

Mz)=l-n y,.,, 
[ 1 [q=P] 

(3.5) 

(3.6) 

Here, and throughout what follows, the product ranges over n = 1, 2, . . . . The second formula 
enables us to calculate A.(T) fairly reliably for z~H-especially if the initial approximation is 
chosen sufficiently distant from the axis Imz = 0. 

The value of the parameter q may be determined by other methods, applying several iterative 
procedures [5] to determine the roots of the equation 

4z3-g*z-gg3 =o (3.7) 

and to calculate the complete elliptic integrals of the first kind. 
Once the value of LEG satisfying Eq. (3.4) has been determined, we must find the half-period 

o of least absolute value. We recall that the problem has already been solved for z = =, in which 
case the elliptic function degenerates into a singly periodic function: w’= 00. We may therefore 
assume [4] that the roots of Eq. (3.4) have the form 

el = 242, e2 = d3 = -a 

where necessarily 

g2 =12a*, g, =8u3, 01=(12&x 

If J(z)= 0, we have r= e2d’3. Then g2(w, 0’) = 0 and, by formulae (3.1), o may be deter- 
mined using the function g3(o, 0’). We have 

b = w’-6s3(1, T) (3.8) 

The quantity b is given, while g,(l, z) may be calculated in terms of theta-functions [4] 

where the theta-functions are calculated by the convenient formulae [2,4] 

8, (ulz) = 2qogx sin rcun Q;, 

e*(h) = 2qoqx CoslrunQ,:, 

e3(u12)=40nQL_,. ~,(ut~)=q,l-IQ;,_, 

q. =n[l-q2n], Q,” =1f2qmcos2~+q2m, q=eirrr 

(3.9) 

(3.10) 
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The half-period o may be any one of the six roots of Eq. (3.8), the corresponding numbers 
being 

These points, together with the three points centrally symmetric to them, form a complete set 
of sixth roots of g,(l, z)lb. Any of these six numbers is a suitable half-period o. The second 
half-period will then be equal to 20, and the doubly periodic lattice will not be changed by a 
different choice. 

If J(z) = 1, then 2 =i is a solution. This is possible if g3(w, 0’) = 0. Then we can again 
determine o from (3.1), using the equation 

u = wdg2(l, zj (3.11) 

in which we must put [4] 

The half-period here may be any of the four roots of Eq. (3.11), which lie at the points 

w=l~lexp[$arg(~Qf$Ql)], w’=TW=iW, -0, iW 

Taking any of these numbers as o, we must automatically take o’ to be io. Hence the integral 
lattice will not depend on the specific choice made. 

In alI other situations, i.e. when a, b # 0, combining (3.8) and (3.11), we obtain 

w2 = @/a) (a = &(l, z)/a., B = g3(1, W) 

As half-period we can choose one of the two numbers 

a= Ifi/alexp[~arg@/a)], -0 

Then the second half-period will be, accordingly, either 20 or -70. The integral lattice obtained 
as a result does not depend on the specific choice made. In addition, o and -0. satisfy both 
Eqs (3.8) and (3.11), since 

where, in accordance with (3.8) and (3.11), allowance is made for the fact that p’ = a3. The other 
roots of Eqs (3.8) and (3.11) cannot be identical. This is not surprising, since the roots of the 
former equation form a square, while those of the latter are arranged in a regular hexagon. The 
vertices may therefore coincide at only two points. 

It remains to see how to calculate the @-functions and their derivatives in formulae (2.11) or 
(2.21). We again use theta-functions [4], obtaining 

p[u,]=ea +L ( e;(olz) 9,+,(ulz) 2 

4w2 ea+, (017) 8, (m) 1 
(a = 1,2,3) 

63’b, I= --$ [e,(oiz)e,(oiz)e,(oi~)l 2 e2(ui2)e3(ui2)e,(ui2) 
e;(a) 

01 =w, 02 =w’, w3 =w+w’, e,(e) = e,(m), u = u, / (2~) 
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where e, = do,] are the roots of EQ. (3.7) 
Thus, to calculate the g-function we have to know at least one root of Eq. (3.7). The roots 

may also be expressed in terms of theta-functions [4] 

7c2 
el = ~[C$(Ol7)+f$(OlQ] 

e, =-e, -e2 = --&[e:(ol~)+e:(olr)] 

After determining z and w in the general position when a, # 0, we still have to determine the 
parameter characterizing the uniformization of the appropriate elliptic curve: the solution of the 
system of equations (2.10). We note, finally, that w is the half-period of the g-function in 
formulae (2.11) when a, # 0. By formula (2.11), a doubly periodic solution of Eq. (2.1) has 
half-period a;“*w. Thus the three numbers z, a:‘* w, u are structural constants that uniquely 
define a doubly periodic solution of Eq. (2.1). 

4. COMPUTING THE TRAJECTORIES 

To complete the description of the solution of the problem of two fixed centres, we need a 
procedure for computing the functions t(u) (in Eq. (1.2)) and v(u) (in Eq. (1.4)). 

It is obvious from (1.2) and (1.4) that v(u) and t(u) may be evaluated with the help of the 
elliptic integrals 

I 
du 

z&+-2 ’ 
j z;(u)du (y = 1, i) (4.1) 

where the function Z*(U) is of the form z*(u)= z(u,,+u), obtained from (2.12), and U, is 
obtained from (2.13). 

The first integral of (4.1) can be reduced to computing the integrals 

/=j d” 
z204)-Y’ 

(y’ = fl,fi) 

Changing from u to the new variable of integration 

we can reduce the integral (4.2) to 

UI = c&,0 + u) 

1, = 1 d”l 
ZI (u, 1 - c 

where zl(uJ is obtained from (2.11). 
It follows from the standard identity [2] 

1 g’(u-U/2)-@‘(U) lP’(u-u/2)+p’(u+u/2) 

2 @(u-u/2)-p(u) 2 @(u-U/2)-p(u+u/2) 

that 4(y) is an even function and z&) an odd function. The function 

(4.2) 

(4.3) 

z,(y) has two first- 
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order poles in the parallelogram of periods: a, = u/2, Q, = -u/2. The same is true of the zeros of 
the function zi(~J - c, hence also of the poles of the integrand (z*(4) - c)-‘. Suppose these are 
the points 4 = w, 4 = -w. 

Taking the properties of elliptic functions into account, we finally obtain 

1 C(b,)-W2) + rO$ -b,H.(u, -9) 

Zl(U,b-C = P(&)--@(q) @(b, ) - m%) 

h, = w - u/2, b2 = -w - u/2 

where c(4) is the familiar Weierstrass c-function. Finally, evaluation of the integral I1 yields 

For the c-function we propose to use the equality 

The constant y may also be determined by the useful formula [2] 

Now consider the quadrature for the time variable. This reduces to evaluating the second 
integral in (4.1). If we now make the substitution (4.3) the integrand may be expressed in terms 
of (2.12). Taking the properties of the poles z,(uJ into account, we finally obtain 

(zdu*F$)’ =A,,+A,(<(u, -u/2)-<(u, +u/2))+ 

+A,@( u, - u / 2) + A@( u1 + II / 2) (4.4) 

and the constants Ak (k = 0, 1,2,3) may be determined in the form 

A, g(u), A, =$, A,=A,=l 
I 

The function (4.4) is integrated in standard fashion. 
We draw attention to a well-known fact: the functions v(u) and t(u) consist of two terms, one 

linear and one periodic as functions of u. this may be utilized when one wishes to invert the 
function t(u) to calculate the coordinates h, u, v for a given instant of time. 

The equation 

r(u) = t - r() (4.5) 

may be solved as follows. Let 
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t(u) = lu + (l(u) 

where g(u) is periodic in u and 1 is a constant. Then, knowing the increment of r(u) over each of 
the half-periods 20 and 2%~ (with respect to the variable u, not u,, as before), namely, 2oZ, 
2701, respectively, we can solve Eq. (4.5) in the fundamental parallelogram of periods. Suppose 
this equation has the form 

t(u) = f] (fl = t - f() - 2nol- 2n’zwl) (4.6) 

To solve this equation, one can take the initial approximation to be u,, = I-?,, and then employ 
an iterative procedure to determine a solution. If this solution is found to be u, the final answer 
will have the form u = u. + 2nw+ 2n’zw. The iterative computation of u. is based on the non- 
degeneracy property of the derivative drld~. Referring to (1.2), we conclude that degeneracy can 
occur in real motions at just one point-the origin. For the space-satellite case, therefore, Eq. 
(4.6) is always solvable in a rigorous sense. 

As to an algorithm to compute the number t, E C, since the periods 203, 20’ = 220 form the 
basis of a real vector space in the complex plane, it follows that for u EC we have a 
representation u = a201 +a’2w’ (a, a’ E R). The vectors 20 and 20’ are taken by the linear 
mapping u + lu to the vectors 21~ and 21w’, respectively. This transformation preserves linear 
independence. We therefore obtain a unique representation 

t - to = b21w + b’21w’ (b, b’ E R) 

Clearly, to transform to the fundamental parallelogram, we must replace b and b’ by their 
fractional parts: their integer parts will be precisely the numbers n and E in (4.6): n = [b], 
n’ = [b’]. 

It remains to find b, B’ER. Let 

t - to = t, + t*i, 10 = S2, + f&i, 10 = Cl; +&i 

Then b, b’ is a solution of the system of linear equations 

2R,b+2R;b’=t,, 2R,b+2R;b’=t, 

which is uniquely solvable, since the vectors 1 o and lo’ are linearly independent in C-R’. 
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